

Al-enabled softwaredevelopment automation

Houari Sahraoui

Artificial Intelligence for Software Engineering

Software Engineering for Artificial Intelligence

- Supporting scientists in using ML/DL algorithms
 - From a scientific problem to a ML/DL implemention: a conceptual framework
 - Methods and tools to support non-computer scientists to use MI/DL

SE and AI for Cyber-Bio-Physical Systems

- Digital shadows and digital twins
- Al to improve simulation
- Simulation to improve design space exploration
- Application to smart agriculture (vertical farming)

Learning with GP

- Issues
 - Large (infinite) search space
 - Bloating
 - Single fitness peak

Université de Montréal

Genetic Programming vs ML/DL

- Genetic programming
 - Small amount of examples to learn from
 - Allow to learn complex executable artefacts
 - Low generalizability
- ML/DL
 - Large data sets to learn from or to fine-tune existing models
 - Work well only with small artefacts
 - High generalizability

🔀 geodes

Learning Well-Formedness Rules with GP

• Why learning WFRs?

• Learning principle

Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H., & Combemale, B. Automatically searching for metamodel well-formedness rules in examples and counter-examples. MODELS2013

• Candidate solution

• Genetic operators

Mutation

- At invariant set level
 - Add a new invariant
 - Delete an invariant
 - Combine two invariants with "implies"
- At invariant level
 - Change a comparison operator
 - Change a logical operator
 - Incrementing/decrementing a numerical constant
 - Replace an attribute or a reference (same type and context).
 - Replacing a sub-tree.
 - Negating an invariant

- Objectives
 - Classification accuracy of valid and invalid examples
 - \circ $\,$ Size of the WFR set
 - # leafs in the tree of WFR set, normalized between 0 and 1

Gómez, J. J. C., Baudry, B., & Sahraoui, Searching the boundaries of a modeling space to test metamodels. ICST 2012

de Montréal

- MOGP limitations
 - Single fitness peak

Diversity of solutions decreases

 $\frac{c = a^2 + b}{c = 2a + b}$

Some examples are more frequently solved in general..

..and **rare cases** might be neglected !

- MOGP limitations
 - Single fitness peak

Diversity of solutions decreases

 $\frac{c = a^2 + b}{c = 2a + b}$

Some examples are more frequently solved in general..

..and **rare cases** might be neglected !

- Fitness of a solution
 - Proportional to the **number of examples solved**
 - Offset by the frequency of which an oxomologie solved by the population's individuals (IERF)

An example is **less** frequently solved..?

..it becomes more valuable !

	4	Idure X	Idun to	Idure X	10ms	10up
Solution 0		~	~			
Solution 1						
Solution 2						
Solution 3						
Solution 4						
Solution 5						
Solution 6						
Solution 7						
Solution 8						
ERF g	9 7/6	9/6 ' ç	6 9 9/7	9/8	¥ ₹)

Batot, E., & Sahraoui, H. Promoting social diversity for the automated learning of complex MDE artifacts. *Software and Systems Modeling*, 2022.

I

Université de Montréal

• Evaluation: accuracy and convergence

Koepes (Deep) Learning Software Artefacts

• State-of-the-art learning paradigm

Université de Montréal

Koeodes (Deep) Learning Software Artefacts

• Dealing with data scarcity for software modeling tasks

Capuano, T., Sahraoui, H., Freney, B., Vanderose, B., Learning from Code Repositories to Recommend Model Classes, ECMFA/JOT 2022

Sources (Deep) Learning Software Artefacts

• Model completion using code repositories

Capuano, T., Sahraoui, H., Freney, B., Vanderose, B., Learning from Code Repositories to Recommend Model Classes, ECMFA/JOT 2022

Université m

de Montréal

Koepes (Deep) Learning Software Artefacts

• Multimodal learning with code concept graphs

Weyssow, M.; Sahraoui, H.; Liu, B.; Better Modeling the Programming World with Code Concept Graphsaugmented Multi-modal Learning, ICSE-NIER2022,

Sources (Deep) Learning Software Artefacts

 Recovering abstract syntax trees from hidden representations of pre-trained language models

López, J.A., Weyssow, M.; Cuadrado, J. S.; Sahraoui, H.; AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models, ASE2022,

Université m de Montréal

Key Takeawys

Learning problems are often more difficult than they appear at first glance

"Low-hanging fruit" solutions are only initial steps towards solving the problems

Deep learning paradigm offers a world of possibilities for solving complex problems

Important to choose the right the problem to solve with DL. "Choose the nail and then look for the hammer."

Université m de Montréal

×geodes Acknowledgement

- Collaborators
 - MOGP to learn software artefacts

• MOGP to repair software artefacts

DL to learn software artefacts

